Non-Classical Hyperplanes of DW(5, q)

نویسنده

  • Bart De Bruyn
چکیده

The hyperplanes of the symplectic dual polar space DW (5, q) arising from embedding, the so-called classical hyperplanes of DW (5, q), have been determined earlier in the literature. In the present paper, we classify non-classical hyperplanes of DW (5, q). If q is even, then we prove that every such hyperplane is the extension of a non-classical ovoid of a quad of DW (5, q). If q is odd, then we prove that every non-classical ovoid of DW (5, q) is either a semi-singular hyperplane or the extension of a non-classical ovoid of a quad of DW (5, q). If DW (5, q), q odd, has a semi-singular hyperplane, then q is not a prime number.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Points and hyperplanes of the universal embedding space of the dual polar space DW ( 5 , q ) , q odd

In [10], one of the authors proved that there are 6 isomorphism classes of hyperplanes in the dual polar space DW (5, q), q even, which arise from its Grassmann-embedding. In the present paper, we extend these results to the case that q is odd. Specifically, we determine the orbits of the full automorphism group of DW (5, q), q odd, on the projective points (or equivalently, the hyperplanes) of...

متن کامل

Hyperplanes of DW(5, K) containing a quad

We prove that every hyperplane of the symplectic dual polar space DW (5, K) that contains a quad is either classical or the extension of a non-classical ovoid of a quad of DW (5, K).

متن کامل

The hyperplanes of DW(5, 2h) which arise from embedding

We show that there are 6 isomorphism classes of hyperplanes of the dual polar space ∆ = DW (5, 2h) which arise from the Grassmannembedding. If h ≥ 2, then these are all the hyperplanes of ∆ arising from an embedding. If h = 1, then there are 6 extra classes of hyperplanes as has been shown by Pralle [23] with the aid of a computer. We will give a computer free proof for this fact. The hyperplan...

متن کامل

The hyperplanes of DW(5,F) arising from the Grassmann embedding

The hyperplanes of the symplectic dual polar space DW (5,F) that arise from the Grassmann embedding have been classified in [B.N. Cooperstein and B. De Bruyn. Points and hyperplanes of the universal embedding space of the dual polar space DW (5, q), q odd. Michigan Math. J., 58:195–212, 2009.] in case F is a finite field of odd characteristic, and in [B. De Bruyn. Hyperplanes of DW (5,K) with K...

متن کامل

Hyperplanes of Hermitian dual polar spaces of rank 3 containing a quad

Let F and F′ be two fields such that F′ is a quadratic Galois extension of F. If |F| ≥ 3, then we provide sufficient conditions for a hyperplane of the Hermitian dual polar space DH(5,F′) to arise from the Grassmann embedding. We use this to give an alternative proof for the fact that all hyperplanes of DH(5, q2), q 6= 2, arise from the Grassmann embedding, and to show that every hyperplane of ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Electr. J. Comb.

دوره 20  شماره 

صفحات  -

تاریخ انتشار 2013